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Abstract: The ICCVAM Acute Toxicity Workgroup (U.S.
Department of Health and Human Services), in collaboration
with the U.S. Environmental Protection Agency (U.S. EPA,
National Center for Computational Toxicology), coordinated
the “Predictive Models for Acute Oral Systemic Toxicity”
collaborative project to develop in silico models to predict
acute oral systemic toxicity for filling regulatory needs. In
this framework, new Quantitative Structure-Activity Rela-
tionship (QSAR) models for the prediction of very toxic (LD50

lower than 50 mg/kg) and nontoxic (LD50 greater than or
equal to 2,000 mg/kg) endpoints were developed, as
described in this study. Models were developed on a large
set of chemicals (8992), provided by the project coordina-
tors, considering the five OCED principles for QSAR
applicability to regulatory endpoints. A Bayesian consensus
approach integrating three different classification QSAR

algorithms was applied as modelling method. For both the
considered endpoints, the proposed approach demon-
strated to be robust and predictive, as determined by a
blind validation on a set of external molecules provided in a
later stage by the coordinators of the collaborative project.
Finally, the integration of predictions obtained for the very
toxic and nontoxic endpoints allowed the identification of
compounds associated to medium toxicity, as well as the
analysis of consistency between the predictions obtained
for the two endpoints on the same molecules. Predictions
of the proposed consensus approach will be integrated
with those originated from models proposed by the
participants of the collaborative project to facilitate the
regulatory acceptance of in-silico predictions and thus
reduce or replace experimental tests for acute toxicity.

Keywords: oral toxicity · QSAR · consensus · ICCVAM

1 Introduction

Acute toxicity testing aims to assess the generic toxic
effects of a chemical or product, caused by the exposure
through a pre-defined route (oral, dermal, inhalation) and
that occur during a subsequent 21-day observation peri-
od.[1] Acute toxicity assessment is a requirement under
many regulatory frameworks for the classification and
labelling of several types of substances, such as industrial
chemicals (REACH, Annexes VII and VIII), biocides (EU
528/2012), pesticides (EC 1107/2009) and cosmetic ingre-
dients (SCCS/1564/15). Acute oral toxicity is usually deter-
mined in vivo, through the Lethal Dose 50 (LD50) testing,
which aims to find the single lethal dose of a substance
killing half of the animals in a test group, with ethical and
cost/time drawbacks due to the utilization of living animals.
In this context, alternatives to animal testing play a central
role for the reduction, replacement and rationalization of
the tests performed on animals.[2]

In 2017, the Acute Toxicity Workgroup (ATWG) of the
Interagency Coordinating Committee on the Validation of
Alternative Methods (ICCVAM) organized a collaborative
project to develop in silico models of acute oral systemic
toxicity that predict several acute-toxicity-related endpoints,
based on a large dataset of rodent studies and targeted

towards regulatory needs identified across federal agen-
cies.[3] These endpoints included: (a) identification of “very
toxic” chemicals (LD50<50 mg/kg), (b) identification of
“nontoxic” chemicals (LD50�2,000 mg/kg), (c) point esti-
mates for rodent LD50, (d) categorization of toxicity hazard
using the U.S. Environmental Protection Agency (EPA) as
well as the United Nations Globally Harmonized System of
Classification and Labelling (GHS) classification schemes.
The rationale behind the project was to involve several
international research groups and develop multiple in silico
models to be aggregated for regulatory applications. In fact,
while regulatory acceptance of computational predictions is
unlikely to be achieved with a unique model developed by
a single lab, the aggregation of multiple and diverse models
allows to leverage the models’ strengths, thereby over-
coming the limitations of the individual approaches.
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For the scopes of such an international project, the NTP
Interagency Center for the Evaluation of Alternative Toxico-
logical Methods (NICEATM), in collaboration with the U.S.
Environmental Protection Agency’s National Center for
Computational Toxicology (U.S. EPA NCCT), has compiled a
large body of rat acute oral lethality data that can be used
for the development of the in silico models of acute oral
systemic toxicity. The organizing committee of the ICCVAM
collaborative project invited then international research
groups to develop in silico models that predict any or all of
these endpoints. The participants were provided with part
of the collected experimental data, while the remaining part
of the dataset was used for the model evaluation by the
organizing committee. Models developed for the project
that met criteria defined by the project organizing
committee will be used to generate consensus predictions
for the acute oral toxicity endpoints of interest to regulatory
agencies.[3]

In the framework of the ICCVAM collaborative project,
this study presents the models developed for the very toxic
and nontoxic endpoints by the Milano Chemometrics &
QSAR Research Group at the University of Milano-Bicocca.
The developed models are based on novel as well as
benchmark machine learning techniques that were merged
in a consensus approach, thereby increasing their reliability
for animal testing replacement and regulatory applications.
Models were developed on a large set of chemicals,
considering the five OCED principles for QSAR applicability
to regulatory endpoints. In particular, a double validation
protocol was carried out and models were assessed through
a blind validation on a set of external molecules provided in
a later stage by the coordinators of the collaborative
project. Finally, the identification of hazardous chemicals
was undertaken by integrating predictions obtained for the
very toxic and nontoxic endpoints.

2 Materials and Methods

2.1 Experimental Toxicity Data

NICEATM and NCCT collected and curated a rat acute oral
toxicity database of systemic toxicity Lethal Dose 50 (LD50)
values, which represent the concentration needed to cause
lethality in 50 % of the utilized animals.[4] A total of five
different modelling endpoints related to acute oral systemic
toxicity were provided, on the basis of regulatory criteria
and decision contexts used by ICCVAM agencies. In this
study, two endpoints were considered to calibrate qualita-
tive QSAR models: a) very toxic (VT), defining molecules as
positive (very toxic) if their experimental LD50 was lower
than 50 mg/kg; b) nontoxic (NT), defining molecules
positive (nontoxic) if their experimental LD50 was greater
than or equal to 2,000 mg/kg.

A detailed description of data processing to establish
the experimental endpoint values is provided in the

collaborative project website[4] and here summarized. When
chemicals were associated to multiple experimental LD50

values, the median of the lower quantile was computed to
report a single LD50 value. For the purpose of class
identification for test LD50 values on the limit of hazard
categories, any experimental value associated to a greater
than (>) or less than (<) symbol was adjusted, that is,
>2,000 mg/kg was retained as 2,001 mg/kg and
<2,000 mg/kg was retained as 1,999 mg/kg.[4]

The database included 11,992 chemicals associated to
experimental LD50 values and was initially semi-randomly
divided into a calibration set (75 %) and validation set
(25 %), since equivalent coverage with respect to LD50

distribution was considered for the splitting. The calibration
set, including 8,994 chemicals, was thus distributed to the
project participants for training and internal validation of
QSAR models, together with the QSAR-ready structures in
the form of SMILES, CASRN, and one value per molecule
corresponding to each of the provided endpoints.

Molecular structures of the calibration set were initially
curated to detect potential incorrect SMILES using the RDKit
normalizer node of KNIME v. 3.6.1 (default settings). No
molecules were removed from the original set of 8,994
chemicals; however, the SMILES of 50 chemicals were
modified due to incorrect aromaticity definition. The list of
these molecules and their SMILES are provided in Table S1
of the supplementary material of this manuscript.

The validation set (2,894 chemicals) was embedded
within a large prediction set to carry out blinded validation
and evaluation of models by the coordinators of the
collaborative project. The prediction set, including 48,137
chemicals described by CASRN and chemical structures in
machine-readable format, was distributed in a later stage
after the model calibration had been completed. Character-
istics of the calibration and validation sets are summarized
in Table 1 for the two modelled endpoints. Note that the
number of molecules included in the VT and NT calibration
and validation sets differs: 2 and 13 of the 8,994 chemicals
included in the calibration set had no experimental data for
VT and NT endpoint, respectively; 4 chemicals of the

Table 1. Description of the calibration and validation sets. The total
number of chemicals, as well as the number of positive and
negative molecules, are reported for the very toxic (VT) and
nontoxic (NT) endpoints.

Endpoint Set Molecules Positive Negative

VT Calibration 8992 741 8251
(LD50<50 mg/Kg) " Training 6744 556 6188

" Test 2248 185 2063
Validation 2894 243 2651

NT Calibration 8981 3848 5133
(LD50�2000 mg/Kg) " Training 6735 2886 3849

" Test 2246 962 1284
Validation 2890 1235 1655
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validation set were not associated to any label for the NT
endpoint.

For the sake of simplicity, positive molecules are herein-
after intended as those whose experimental LD50 value
respects the defined limit of hazard categories; for the VT
endpoint, molecules are labelled as positive if their LD50

value is lower than 50 mg/kg, otherwise as negative;
analogously, for the NT endpoint, molecules are defined as
positive when associated to experimental LD50 greater than
or equal to 2,000 mg/kg, otherwise as negative. Thus, the
calibration and validation sets of the VT endpoint resulted
to be less balanced than the NT endpoint, the positive class
being less represented.

The chemicals provided for model calibration were
further divided into a training and a test set, containing
respectively 75 % and 25 % of the molecules included in the
calibration set (Table 1). When randomly splitting the
calibration set, the same proportion between positive and
negative molecules was maintained in the test and training
sets (stratified splitting). Thus, 2,248 and 2,246 chemicals
were selected as test compounds for the VT and NT
endpoints, while the remaining 6,744 and 6,735 chemicals
were included in the training sets, respectively.

The calibration, validation and prediction sets are
available on-line at the project website.[4]

2.2 Molecular Descriptors

Binary extended connectivity fingerprints were used as
molecular descriptors for model calibration. Fingerprints
(FPs) allow the complete representation of the molecular
structural fragments in a series of binary digits (bits)
encoding the presence or absence (as 1 and 0, respectively)
of particular fragments and substructures in the molecule.[5]

There are several different algorithms for the calculation of
binary FPs; among them, the most frequently used hashing
algorithms produce compact FPs but with a “collision” of
multiple molecular fragments in the same bit(s), and a
consequent loss of one-to-one correspondence with molec-
ular fragments.

In particular, Extended Connectivity Fingerprints (ECFPs)
are obtained by exhaustively enumerating all circular frag-
ments grown radially from each non-hydrogen atom of the
molecule up to a specific radius and then hashing these
fragments into a fixed-length bit vector.[6] Thus, ECFPs are
calculated through the generation of atom-centred frag-
ments in an iterative procedure, which initially considers
only atoms (radius equal to 0), then bonded atoms (radius
equal to 1), and so on, until the pre-defined maximum
radius. Additional to the fingerprint length and radius
considered, the number of bits associated to each radial
fragment can be selected. In this study, different types of
ECFPs were calculated, considering the occurrences of any
fragment identified in the molecule and the options listed
in Table 2.

As an additional set of descriptors, we used the
fragments generated for calculating the ECFP: each mole-
cule was characterized by a binary vector indicating the
presence (1) or absence (0) of the molecular fragments
derived from the calculation of ECFP_1024_05 (Table 2).
Only fragments present in at least 10 chemicals were
retained, leading to a total number of fragments equal to
3152.

Molecular descriptors calculated in this study for the
training, test and validation molecules are available for
download at the Milano Chemometrics and QSAR Research
Group website: http://www.michem.unimib.it/download/
data/.

2.3 Classification Models

Since two qualitative endpoints were considered in this
study, QSAR models were calibrated through mathematical
methods able to predict chemicals in a qualitative class,
that is, positive or negative. Three different supervised
classification algorithms were used in this framework: N-
Nearest Neighbours (N3), Binned-Nearest Neighbours (BNN)
and Naı̈ve Bayes (NB), as described below:
* N-Nearest Neighbours (N3) is a local classification

method, which, similarly to K-Nearest Neighbour (KNN),
uses the experimental class of similar compounds to
predict a target chemical.[7] N3 considers all the available
compounds as neighbours and, through an optimized a

exponent, tunes their contribution as exponentially
decreasing with decreasing their similarity to the target
compound. Similarities between compounds were calcu-
lated with the Jaccard-Tanimoto similarity index,[8] which
is a benchmark similarity measure between binary
vectors.

* Binned-Nearest Neighbours (BNN) is another variant of
local classifiers.[7] BNN predicts the class of a target
chemical by means of a variable number (k) of similar
compounds, according to the criterion of majority vote.
To select the k compounds that have the largest similarity
to the target and to be used for the prediction, similarity
intervals (i. e., bins) are defined and only chemicals falling
into the first non-empty interval (according to their
similarity to the target) are considered for prediction.

Table 2. Options used for the fingerprint calculation. For each type
of ECFPs, the identification code, the minimum and maximum
length, the number of bits and the bits per pattern are provided.
The latest column specifies if atoms are distinguished according to
the number of SSSR rings to which they belong.

Code min length max length no. bits bits/
pattern

SSSR

ECFP_1024_02R 0 2 1024 2 yes
ECFP_1024_02 0 2 1024 2 no
ECFP_1024_05 0 5 1024 3 no
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Similarity bins are determined by optimization of a tuning
parameter a, which defines the bin width. As for N3, the
Jaccard-Tanimoto similarity index was used to estimate
similarities between compounds.[8]

* Naı̈ve Bayes (NB) is a probabilistic method, based on
Bayesian posterior probabilities derived from the max-
imum likelihood probabilities.[9] Maximum likelihood
probabilities are calculated for each bit of the binary
molecular representation on the basis of the frequency of
positive (or negative) compounds for the specific bit. A
target compound is then predicted in the class associated
to the highest posterior probability.

2.4 Model Validation and Assessment

Validation of QSAR models was carried out at different
stages of the modelling phase, taking advantage of the
data set splitting (see Table 1). Only the training molecules
were used to calculate QSAR models, while chemicals
included in the test and validation sets never participated in
model optimisation and tuning of model parameters. In
particular, chemicals included in the test sets were used to
initially validate the models calibrated on the training
samples, since at the first modelling stage experimental
information for molecules included in the validation set was
not yet available. As previously explained, the validation set
was embedded within the prediction set and used to carry
out blinded validation of models by the organizing
committee of the ICCVAM collaborative project.[3] Thus,
validation chemicals were used to further validate the
proposed QSAR models in a second stage. Finally, during
the modelling phase, internal cross validation was used to
tune and optimise model parameters, such as the a value
for the N3 and BNN approaches. Cross validation was
performed with training molecules divided in 5 cancellation
groups defined by a venetian blind sampling protocol.[10]

The classification performance of models was assessed
through Sensitivity (Sn) and Specificity (Sp), which are
expressed as follows:[11]

Sn ¼ 100 � TP
TPþ FN

Sp ¼ 100 � TN
TNþ FP

where TP, TN, FP and FN are the number of true positives
(positive compounds correctly classified), true negatives
(negative compounds correctly classified), false positives
(negative compounds classified as positive) and false
negatives (positive compounds classified as negative),
respectively. The Non-Error Rate (NER) was finally calculated
as the average of specificity and sensitivity.[11]

2.5 Applicability Domain

The applicability domain (AD) defines the structural domain
where a given QSAR model can be applied and conse-
quently only the predictions falling in the AD can be
considered reliable. One of the primary bases in defining
such a domain can be the structural space of the training
molecules, as the reliable predictions from that model will
be limited to the test samples belonging to this restricted
structural domain.[12]

Specific approaches for defining the model applicability
domain were developed for each QSAR modelling method,
as follows:
* N3: a target molecule was considered outside the model

applicability domain if its highest similarity with respect
to one of the defined experimental class spaces (defined
in terms of N3 weights) was lower than a defined
threshold. Details on N3 weights can be found in
literature.[7] The AD threshold was set as the 95 %
percentile of N3 weight values for the training chemicals.

* BNN: a target molecule was considered outside the
model applicability domain if its average Jaccard-Tanimo-
to similarity to the most similar molecules of the first
non-empty similarity bin was lower than a defined
threshold. This threshold was set to 0.6 and 0.5 for the
very toxic (VT) and nontoxic (NT) endpoints, respectively.

* NB: a target molecule was considered outside the model
applicability domain if its average Jaccard-Tanimoto
similarity to the most similar 100 molecules was lower
than a defined threshold. This threshold was set as the
95 % percentile of average Jaccard-Tanimoto similarity to
the nearest 100 molecules for the training chemicals.

2.6 Consensus Analysis

For both the very toxic and nontoxic endpoints, three
modelling methods, based on different mathematical
approaches, were carried out to classify chemicals as either
positive or negative. It has been demonstrated that data
integration can increase reliability and reduce the effects of
contradictory data by averaging results.[13] In particular,
qualitative consensus methods have been shown to reduce
the effects of contradictory data by averaging predictions of
models,[14] when dealing with the combination of several
QSAR models. Consensus analysis was thus applied to
combine information and predictions obtained by the three
different modelling techniques.

Bayesian consensus with discrete probability distribu-
tions was adopted for each modelled endpoint. Bayesian
rules evaluate the a-priori probability that molecules belong
to a specific class for each information source and then
combine them to provide a joint probability.[15] Only a brief
introduction to this method is provided, since further details
can be found in the literature.[15,16]
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The Bayesian consensus initially considers the first
evidence “e”, e. g. the class predicted by the first-QSAR
classification model. Then, the posterior probabilities p(hg j
e) that hypothesis hg is true given evidence e is calculated
and used as new prior probability for the second step,
where the class predicted by the second QSAR classification
model is the new evidence e. Thus, the Bayes consensus
proceeds with this iterative procedure, until predictions of
all information sources have been entered in the process
and the fused posterior probabilities are obtained. Finally,
the Bayesian consensus predicts the class with the
maximum posterior probability. This probability can also be
used to accept or discard the predicted class depending on
a predefined threshold,[15] thus providing the so-called
“protective” fusion approach. In this way, the Bayesian
approach can detect situations where uncertainty is high
and therefore a low reliability is associated to the
prediction.

2.7 Software

Extended Connectivity binary fingerprints (ECFPs) and
molecular fragments were calculated by means of Dragon
7.[17] N3 and BNN QSAR models were calculated by means of
N3-BNN Toolbox for MATLAB.[7] Naı̈ve Bayes and the
consensus strategy were calculated with MATLAB routines
written by the authors. Data and MATLAB code to calculate
the models proposed in this study are available for down-
load at the Milano Chemometrics and QSAR Research Group
website: http://www.michem.unimib.it/download/data/.

3 Results

3.1 Individual QSAR Models and Consensus Analysis

QSAR models were developed according to the OECD
principles, by ensuring unambiguity and transparency. In
fact, five guiding principles have to be fulfilled to foster the
applicability of QSARs,[18] as proposed by the Organization
for Economic Collaboration and Development (OECD): (1) a
defined end point, (2) an unambiguous algorithm, (3) a
defined domain of applicability, (4) appropriate measures

for goodness-of-fit, robustness and predictivity and (5) a
mechanistic interpretation, if possible.

QSAR classification models based on N3, BNN and NB
algorithms were initially calibrated with the 6744 training
molecules for the VT endpoint and 6735 training molecules
for the NT endpoint. Internal cross validation was performed
on the training molecules to a) optimize the a value for the
N3 and BNN approaches and b) select the best set of
molecular descriptors for each classification method and for
each endpoint. ECFPs with maximum path length equal to
2 were used as descriptors for models to predict the VT
endpoint (ECFP_1024_02 in Table 2). The Naı̈ve Bayes model
(NB) was trained on ECFPs with the same characteristics as
the other models, but the atoms were also distinguished
according to the number of SSSR rings to which they
belong (ECFP_1024_02R in Table 2). For the NT endpoint,
models were calculated with descriptors based on ECFPs
with maximum length equal to 5 for the BNN and N3
approaches (ECFP_1024_05 in Table 2), while the 3152
molecular fragments derived from the calculation of ECFP_
1024_05 were used for the calibration of the Naı̈ve Bayes
classifier.

Afterwards, the calibrated classification models were
used to predict molecules included in the test set (2248 and
2246 for the VT and NT endpoints, respectively) and the
validation set (2894 and 2890 for the VT and NT endpoints,
respectively). Applicability domain was then evaluated on
the test and validation chemicals for each classification
model and each modelled endpoint. Finally, the Bayesian
consensus was applied to integrate the predictions
achieved by the three individual QSAR models. A protective
approach was adopted, as it is demonstrated that it can
usually provide satisfactory results and improve those
obtained by individual models.[16] A protective threshold of
0.90 for the Bayesian approach was selected, which means
that a consensus prediction was provided only if the final
posterior probability was higher than 0.90. Only single
model predictions evaluated inside the model applicability
domain were considered for the consensus analysis.

Table 3 and Table 4 collect the classification statistics of
the three individual QSAR models and their consensus for
both the VT and NT endpoints. In particular, sensitivity (Sn)
and specificity (Sp) are reported along with their arithmetic
mean (non-error rate, NER). As previously defined, positive

Table 3. Classification performances for the very toxic (VT) endpoint of the three QSAR models (N3, BNN and NB) and their consensus
approach estimated on the training, test and validation molecules. Type of molecular descriptors, sensitivity (Sn) and specificity (Sp) values,
non-error rate (NER) and the percentage of non-predicted molecules (n.p.) are reported for each model.

Training Test Validation
Models Descriptors NER Sn Sp NER Sn Sp n.p. NER Sn Sp n.p.

BNN ECFP_1024_02 80 % 64 % 97 % 79 % 61 % 98 % 27 % 83 % 69 % 97 % 28 %
NB ECFP_1024_02R 78 % 73 % 82 % 77 % 69 % 84 % 6 % 76 % 69 % 83 % 5 %
N3 ECFP_1024_02 83 % 80 % 86 % 85 % 83 % 87 % 6 % 86 % 87 % 85 % 6 %
Consensus 88 % 81 % 94 % 88 % 80 % 96 % 24 % 90 % 85 % 94 % 23 %
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molecules are intended as those whose experimental LD50

value respects the defined limit of hazard categories.
Sensitivity and specificity of the models for the VT endpoint
(Table 3) refer to the percentage of very toxic molecules
(positive, experimental LD50 lower than 50 mg/kg) that are
correctly predicted and the percentage of non-very toxic
molecules (negative, experimental LD50 equal or greater
than 50 mg/kg) that are correctly predicted, respectively.
Sensitivity and specificity of the models for the NT endpoint
(Table 4) refer to the percentage of nontoxic molecules
(positive, experimental LD50 greater than or equal to
2,000 mg/kg) correctly predicted and the percentage of not
nontoxic molecules (negative, experimental LD50 lower than
2,000 mg/kg) correctly predicted, respectively. Finally, Ta-
ble 3 and Table 4 also collect the percentages of non-
predicted chemicals (n.p.), which are the molecules found
outside the applicability domain of the individual QSAR
models. In the case of consensus, a molecule may not be
predicted due to a) posterior probability values lower than
the defined protective threshold (0.90) in the Bayes
protective approach, or b) if it is found outside the
applicability domain of all three considered QSAR models.

These statistical measures should be considered all
together to assess and compare the predictive classification
ability of models, because they account for the different
types of error and thus highlight different model behav-
iours,[19] such as the ability to limit false positives (corre-
sponding to high specificity values) and avoid false
negatives (corresponding to high sensitivity values).

3.2 Results for the very Toxic Endpoint

When considering the results of the three individual QSAR
models developed for the VT endpoint (Table 3), balanced
performance was achieved, considering that the NER values
obtained on the training, test and validation sets were
similar. We can thus conclude that stable and non-overfitted
models were obtained. Specific predictive behaviours can
be analysed looking at the classification results achieved on
test and validation molecules. N3 demonstrates slightly
better classification performance (NER equal to 85 % and
86 % on test and validation set, respectively), while BNN is
characterised by the highest rates of specificity (98 % and

97 % on test and validation set, respectively) but to the
detriment of a significantly higher percentage of molecules
considered outside the applicability domain (27 % and
28 %). Like BNN, the NB model is characterised by higher
specificity than sensitivity, while N3 has more balanced
performance on positive and negative molecules.

However, consensus approaches are expected to benefit
from the different behaviours of QSAR models (character-
ised by both balanced and unbalanced values of sensitivity
and specificity) participating in the prediction integration.
Results obtained by the protective Bayesian approach of
N3, BNN and NB models are reported in Table 3. The
consensus analysis provided optimal classification perform-
ance, NER values being always higher than those provided
by individual models for both training, test and validation
sets. For the test and validation chemicals, specificity values
were higher than 94 %, meaning that most of the non-very
toxic molecules (negative) were correctly classified, while
keeping quite satisfactory sensitivity values (equal or higher
than 80 %). Another advantage of the protective Bayes
approach is that its predictions are associated with posterior
probabilities higher than 0.90 and they can, therefore, be
evaluated with a greater level of confidence than those
provided by the individual QSAR models.

Finally, when dealing with consensus approaches, the
number of non- predicted molecules is likely to be higher
due to potential disagreements among predictions of
different individual models. As expected, the Bayes con-
sensus was characterised by higher percentages of unpre-
dicted chemicals than those of N3 and NB models. However,
the percentages of non-predicted molecules achieved on
the test and validations set (24 % and 23 %, respectively) did
not represent any issue in the framework of the collabo-
rative project. In fact, the predictions of the consensus
approach will be integrated with those originated from
models proposed by the participants of the project and
thus chemicals unpredicted by the Bayesian consensus are
expected to be predicted by the models calibrated by other
participants.

Table 4. Classification performances for the nontoxic (NT) endpoint of the three QSAR models (N3, BNN and NB) and their consensus
approach estimated on the training, test and validation molecules. Type of molecular descriptors (as reported in Table 2, sensitivity (Sn) and
specificity (Sp) values, non error rate (NER) and the percentage of not predicted molecules (n.p.) are reported for each model.

Training Test Validation
Models Descriptors NER Sn Sp NER Sn Sp n.p. NER Sn Sp n.p.

BNN ECFP_1024_05 79 % 75 % 82 % 79 % 75 % 82 % 30 % 79 % 74 % 84 % 30 %
NB Fragments_05 74 % 72 % 77 % 73 % 72 % 74 % 6 % 72 % 68 % 77 % 5 %
N3 ECFP_1024_05 77 % 79 % 74 % 77 % 79 % 76 % 5 % 77 % 78 % 77 % 5 %
Consensus 83 % 82 % 84 % 82 % 81 % 84 % 26 % 82 % 80 % 84 % 27 %
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3.3 Results for the Nontoxic Endpoint

Balanced classification performances were achieved also for
the NT endpoint (Table 4), with comparable NER values
obtained on the training, test and validation sets. Again,
this indicates stable and non-overfitted behaviours for the
proposed individual QSAR models.

BNN shows the best overall classification performance
(NER equal to 79 % on both test and validation sets), but
with high percentage of molecules considered outside its
applicability domain (30 % for both test and validation sets).
N3 is characterised by the highest rates of sensitivity (79 %
and 78 % on test and validation set, respectively) and
provides more balanced performances on positive and
negative molecules. As for the VT endpoint, the Bayesian
consensus approach provides optimal classification results,
associated to higher values of both sensitivity and NER than
individual QSAR models.

Finally, the Bayes consensus was again characterised by
higher percentages of unpredicted chemicals than single
N3 and NB models for both the test set (26 %) and
validation set (27 %).

3.4 Combination of very Toxic and Nontoxic Endpoints

At this stage, independent results were obtained on the
two considered endpoints of acute oral toxicity; models and
predictions were in fact carried out separately for the
nontoxic (NT) and very toxic (VT) endpoints. However,
experimental and predicted values of these two endpoints
can be combined, as they are both based on a categorisa-
tion of LD50 values according to the thresholds of hazard,
that is, 50 mg/kg and 2,000 mg/kg for the VT and NT
endpoints, respectively. Integration of VT and NT values can
enhance the identification of hazardous chemicals, provide
higher content of information associated to QSAR predic-
tions and support and assist the analysis of consistency
between the predictions obtained for the two endpoints on
the same molecules. In fact, it may happen that the same
chemical is predicted as positive for both endpoints, that is,
it is predicted both as very toxic and nontoxic. In this case,
aggregating the two predictions would allow to identify a
less reliable prediction.

The experimental classes of NT and VT allow to identify a
third experimental class, that of moderately toxic com-
pounds, that is, compounds having LD50 greater than
50 mg/kg and smaller than 2,000 mg/kg. Thus, given a
chemical associated to both NT and VT experimental class
labels, the following toxicity categories can be derived from
the combination of the two and molecules associated to
intermediate (medium) toxicity can be defined (Figure 1):
* the molecule is labelled as very toxic (VT) if associated to

a positive VT label and negative NT label, i. e. its
experimental LD50 is lower than 50 mg/kg;

* the molecule is labelled as nontoxic (NT) if associated to
a negative VT label and positive NT label, i. e. its
experimental LD50 is higher than or equal to 2,000 mg/kg;

* the molecule is labelled as medium toxic (MT) if
associated to both negative VT and NT labels, i. e. its
experimental LD50 ranges between 50 and 2,000 mg/kg;

This integration scheme was applied by combining
experimental class labels of VT and NT datasets, both for
training, test and validation molecules, leading to the
creation of the integrated dataset. Table 5 reports the total
number of chemicals and the number of molecules for each
of the three experimental toxicity classes (very toxic [VT],
moderately toxic [MT], nontoxic [NT]) for the training, test
and validation sets. Note that the numbers of training and
test chemicals in the integrated dataset differ from those
included in the VT and NT datasets (Table 1). This is due to
the previous independent splitting performed on the two
datasets to select the test molecules. Thus, only chemicals
present in both VT and NT training and test sets were
retained and considered for the combination of the two
endpoints.

Similarly, predictions obtained by means of the Bayesian
consensus for the NT and VT endpoints were combined for
each chemical, with the following scheme:
* the molecule is predicted as very toxic (VT) if associated

to a positive VT prediction and negative NT prediction;
* the molecule is predicted as nontoxic (NT) if associated to

a negative VT prediction and positive NT prediction;

Figure 1. Combination of very toxic (VT) and nontoxic (NT)
experimental labels. Compounds that were neither nontoxic (LD50�
2,000 mg/Kg) nor very toxic (LD50<50 mg/Kg) were labelled as
moderately toxic (MT), that is, compounds having 50 mg/Kg �
LD50<2,000 mg/Kg. For each endpoint, P and N represent positive
and negative according to the threshold, respectively.

Table 5. Characteristics of the integrated dataset. The total number
of chemicals, as well as the number of very toxic (VT), medium toxic
(MT) and nontoxic (NT) molecules are reported for the training, test
and validation sets.

Set Molecules VT MT NT

Training 5043 421 2483 2139
Test 555 50 277 228
Validation 2890 243 1412 1235
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* the molecule is predicted as medium toxic (MT) if
associated to both negative VT and NT predictions;

* the molecule is unpredicted if associated to not consis-
tent VT and NT predictions, that is, both VT and NT
predictions are positive;

* the molecule is unpredicted if it is not assigned by at
least one of the two Bayesian consensus approaches.

Experimental and predicted values for the integrated
dataset were thus matched and classification performances
were evaluated in terms of a) sensitivity of each toxicity
category, that is, the percentage of correctly predicted
molecules experimentally belonging to the class, b) non-
error rate (NER), the average of class sensitivities and c) the
percentage of non-predicted molecules. Classification re-
sults are reported in Table 6 for the training, test and
validation sets of the integrated dataset.

Stable classification performances were achieved, with
comparable NER and sensitivity values obtained on the
three sets. These results confirmed the consistency and the
agreement when integrating consensus predictions of the
NT and VT endpoints, as they are associated to high NER
values (around 80 %, Table 6). When looking at sensitivity of
classes, the intermediate toxicity category (MT) resulted to
be characterised by lower values and, thus, a higher degree
of overlap with respect to the two extreme classes (very
toxic and nontoxic), as expected. However, acceptable
percentages of correctly predicted chemicals for the MT
class were obtained, sensitivity values being higher than
65 % for the training, test and validation sets. On the
opposite, sensitivity of VT and NT categories were charac-
terised by higher values (greater than 80 %).

4 Conclusions

In this work, new QSAR models for the prediction of acute
oral toxicity are proposed. These models were calibrated in
the framework of the “Predictive Models for Acute Oral
Systemic Toxicity” project, coordinated by the ICCVAM
Acute Toxicity Workgroup (U.S. Department of Health and
Human Services), in collaboration with EPA’s National Center
for Computational Toxicology (NCCT). This is a collaborative
project to develop in silico models of acute oral systemic

toxicity that predict specific endpoints needed by regula-
tory agencies.

In this study, the very toxic (LD50 lower than 50 mg/kg)
and nontoxic (LD50 greater than or equal to 2,000 mg/kg)
endpoints were considered to calibrate qualitative QSAR
models. The modelling phase was undertaken by consider-
ing the five OCED principles for QSAR validity; thus, models
were based on simple molecular descriptors (binary
extended connectivity fingerprints and molecular frag-
ments) and a Bayesian consensus approach integrating
three classification algorithms (N3, BNN and Naı̈ve Bayes).
The applicability domain of each model was defined, and
the validation was performed on two sets of molecules.

A blind validation on a set of external molecules
provided in a later stage by the coordinators of the
collaborative project was performed and the proposed
models and their consensus proved to be robust and
predictive for both the very toxic and nontoxic endpoints.
The integration of predictions obtained for the two
endpoints demonstrated absence of conflict and thus a
good agreement between the models predicting the very
toxic and nontoxic endpoints.

The results of this work will be used in combination with
the efforts of the other members of the project consortium.
Predictions of the proposed consensus approach will thus
be merged with those originated from models proposed by
the participants of the project. This integration is expected
to facilitate the regulatory acceptance of in-silico predic-
tions and will contribute to reduce or replace experimental
tests for acute toxicity as required by regulatory authorities.

Data and MATLAB code to calculate the models
proposed in this study are available for download at the
Milano Chemometrics and QSAR Research Group website:
http://www.michem.unimib.it/download/data/
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