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ABSTRACT: The nuclear androgen receptor (AR) is one of
the most relevant biological targets of Endocrine Disrupting
Chemicals (EDCs), which produce adverse effects by
interfering with hormonal regulation and endocrine system
functioning. This paper describes novel in silico models to
identify organic AR modulators in the context of the
Collaborative Modeling Project of Androgen Receptor
Activity (CoMPARA), coordinated by the National Center
of Computational Toxicology (U.S. Environmental Protection
Agency). The collaborative project involved 35 international
research groups to prioritize the experimental tests of approximatively 40k compounds, based on the predictions provided by
each participant. In this paper, we describe our machine learning approach to predict the binding to AR, which is based on a
consensus of a multivariate Bernoulli Naive Bayes, a Random Forest, and N-Nearest Neighbor classification models. The
approach was developed in compliance with the Organization of Economic Cooperation and Development (OECD) principles,
trained on 1687 ToxCast molecules classified according to 11 in vitro assays, and further validated on a set of 3,882 external
compounds. The models provided robust and reliable predictions and were used to gather novel data-driven insights on the
structural features related to AR binding, agonism, and antagonism.

■ INTRODUCTION
The nuclear androgen receptor (AR), whose gene is located on
the X chromosome, is expressed in a wide range of tissues and
plays a fundamental biological role in bone, muscle, prostate,
adipose tissue, and the reproductive, cardiovascular, immune,
neural, and hemopoietic systems.1,2 AR is one of the target
receptors of the so-called Endocrine Disrupting Chemicals
(EDCs), exogenous compounds able to disturb hormonal
regulation and the endocrine system functioning, thereby
producing adverse effects in humans and wildlife.3,4 EDCs can
interact directly with a given nuclear receptor and perturbate or
modulate downstream gene expression,5 but they can also have
direct effects on genes and epigenetic impact.6,7 Disruption of
AR-mediated processes can cause irreversible consequences in
human health.6 For example, some chemicals, like pesticides
(e.g., DDT), disrupt male reproductive development and
function by inhibiting androgen-receptor-mediated events.3

Recently, machine learning (ML) and computer-aided
techniques have shown to be useful for modeling nuclear
receptor modulation of chemicals at different levels, such as drug
discovery and design8−11 and testing prioritization cam-
paigns.12−14 In the context of the prioritization of hazardous
chemicals for experimental testing, in 2016, the National Center
of Computational Toxicology (NCCT) of the U.S. Environ-
mental Protection Agency (U.S. EPA) has launched a
collaborative project (CoMPARA: Collaborative Modeling
Project of Androgen Receptor Activity) to develop in silico
approaches to identify man-made chemicals that modulate AR
(binding, agonism, and antagonism). The project was a large-

scale collaboration among 35 international research groups,
following the steps of the predecessor project CERAPP12

(Collaborative Estrogen Receptor Activity Prediction Project),
which targeted the Estrogen Receptor.
The aim of the CoMPARA consortium was to identify, within

a list of several thousands of man-made chemicals, those with
endocrine disruption potential, to be tested with priority in vitro.
The U.S. EPA provided the consortium member groups with a
common calibration set of 1689 compounds for model
development. Successively, the developed models were utilized
to predict the modulation of AR of a library of approximatively
40K chemicals for further testing in the context of ToxCast,
Tox21, and other U.S. EPA projects. In particular, the individual
groups’ predictions were aggregated by the NCCT researchers
to identify the compounds that are more frequently predicted as
AR modulators.
In this work, we present in silico AR binding models

developed in the context of CoMPARA by the Milano
Chemometrics and QSAR Research group of the University of
Milano-Bicocca. The models are based on the application of
machine learning techniques of different nature, which are then
integrated within a consensus strategy, to increase the prediction
reliability and accuracy. The models were developed in
compliance with the OECD principles for the validity of
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Quantitative Structure−Activity (QSAR) models,15 to max-
imize their usefulness for regulatory applications. While QSAR
models targeting AR are usually developed on approximately
20−400 compounds, to the best of our knowledge, the
CoMPARA data set is among the biggest and more diverse
AR sets available for in silico modeling. Additionally, the data set
is based on the results of 11 in vitro assays, thus making the
experimental response, and the corresponding models, less
prone to generate false positives and false negatives. Finally, the
results of our study validate the application of machine learning
to the prediction of Androgen Receptor binding and show how
these methods provide some data-driven insights on the
structural features related to AR modulation.
The paper is structured as follows: after introducing materials

and methods, the individual models and their consensus are
described. The models are then validated on an external set of
approximatively 4000 molecules and interpreted to gain data-
driven insights into the structural features relevant for AR
binding.

2. MATERIALS AND METHODS

2.1. Data. CoMPARA Calibration Set. A QSAR-ready data
set containing information and experimental data on AR
binding, agonism, and antagonism for 1689 chemicals was
provided by the U.S. EPA. It was extracted from Tox21/
ToxCast16,17 programs. AR modulation (binding, agonism, and
antagonism) was determined in vitro by high-throughput
screening on the basis of 11 in vitro assays capturing the
modulation of AR signaling pathway.18 The participants were
asked to provide models for at least one molecular property. We
chose AR binding (binding vs nonbinding molecules) due to its
best balance between the two classes (13.3% of binders,
compared to 10% and 2% of antagonists and agonists,
respectively) and the largest number of molecules with
annotated values. Two molecules were removed due to issues
in the structure annotation as detected by Dragon 719 (molecule
IDs: DTXSID9035175, DTXSID7032630), thus 1687 mole-
cules were utilized for model development. Data were randomly
split into a training (75%, 1265 molecules) and test (25%, 422
molecules) set by stratified sampling, that is, by preserving the
proportion between the classes in each set. The training set was
utilized for model calibration and internal cross-validation, while
the test set was utilized only at the final stage to validate the
chosen models.
CoMPARA External Validation Set. The final models were

further validated on a set of 3882 compounds, provided at a later
stage and used by the U.S. EPA to score the models of the
CoMPARA consortium members. This validation set was built
by the U.S. EPA from ScrubChem,20 by considering target,
modality, hit quality, and ratio of agreement among the
annotated values.21 The percentage of binders of this set is
similar to that of the calibration set (12% of binders over the
total). In this work, the external validation set served only to
provide an additional assessment of the models’ predictivity
toward unknown compounds, and, thus, it was not used for
model calibration.
2.2. Modeling and Validation. Molecular Descriptors.

Molecular descriptors22 were utilized to numerically capture
diverse types of structural features of molecules. Two types of
molecular descriptors were computed:

1. Extended Connectivity binary fingerprints23 (ECFPs),
also known as “circular fingerprints”, which consider the

presence of branchedmolecular substructures and encode
it into a binary vector of predefined length through a
hashing algorithm. Fingerprints of 1024 bits, with 2 bits
per fragment and a radius comprised between 0 and 2
bonds were generated with Dragon 7,19 with default
settings (Count fragments = True, Atom Options: [Atom
type, Aromaticity, Connectivity total, Charge, Bond
order]).

2. Chemically Advanced Template Search24 (CATS)
descriptors, which capture the distribution of pharmaco-
phores (hydrogen-bond donor and acceptor, positively
and negatively charged, and lipophilic atoms) at an
increasing topological distances (from 0 to 9 bonds,
leading to a total of 150 descriptors). CATS have been
developed to capture pharmacophore patterns of
chemicals regardless of their molecular scaffolds and,
thus, represent a “fuzzier” description of the molecular
structure than ECFPs.24 Also CATSwere computed using
Dragon 7.19

Machine Learning Approaches. We used three different
classification approaches to distinguish AR binding and
nonbinding molecules, as described below.

1. N-Nearest Neighbors (N3)25 is a local modeling method
similar to the well-established k-Nearest Neighbor (k-
NN).26 N3 utilizes all training molecules to determine the
class of the target molecule and, through an optimized α
exponent, tunes their contribution as exponentially
decreasing with decreasing their similarity to the target.
For any i-th target molecule to be predicted, the training
molecules are ranked according to their structural
similarity to the target, and the score (weight) for any g-
th class (wig) is computed as
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where k runs over the training molecules (different from
i), sik is the similarity between i and k (with sik ∈ [0,1]),
and rik is the (tied) rank of the k-th molecule. The Dirac’s
delta (δkg) is equal to 1 if k belongs to the g-th class (Ck =
g) and if the ratio sik/rik

α is larger than a fixed ε (ε = 10−7 in
this work). The weights are then normalized between 0
and 1 as follows:

′ =
∑

w
w

wig
ig

g ig (2)

Finally, the i-th target is assigned the class with the highest
scaled weight (w′ig). The value of α was optimized in 5-
fold cross-validation from α = 0.1 to α = 1.5, with a step of
0.05, and chosen to maximize the cross-validation NER
(see eq 9).

2. Random Forest (RF)27 is a meta-classifier based on an
ensemble of several classification trees. Each classification
tree is trained on various subsamples of the calibration set,
which are built by bootstrapping (i.e., the data set size is
preserved by sampling molecules with replacement). The
final class is predicted as a majority vote on the trees of the
forest. In this work, RF was applied utilizing 100 trees.
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Trees were grown by minimizing the nodes’ impurity, as
measured by the Gini’s diversity index (GDI).28 Let m
denote the m-th node of the tree and GDIm the node’s
impurity, GDIm is defined as follows

∑= −
i
k
jjjjj

y
{
zzzzz

n

n
GDI 1m

g

mg

m

2

(3)

where the summation runs over the classes, and nmg/nm
denotes the fraction of molecules in the m-th node
belonging to the g-th class. A “pure” node (i.e., a node
containing only molecules with the same experimental
class) will have GDI = 0; the larger the GDIm, the less pure
the m-th node. Due to the unbalanced partition between
the two classes (13.3% of binders and 86.7% of
nonbinders), in analogy with a recent study,29 a
misclassification cost for binders (i.e., penalty for
generating false negatives) was introduced and optimized
in 5-fold cross-validation (varying from 0.90 to 0.98 with a
step of 0.02), along with the number of trees (tested
values = [50, 100, 500]).

3. Bernoulli Naive Bayes (NB)30 is a conditional probability
approach based on the Bayes’ theorem. Given an input i
(i.e., the target molecule), described by a vector of p
features xi = (xi1,...,xip), NB calculates the posterior
probability for each g-th class, expressed as

= | = = |P C g x x P C g x( , ..., ) ( )i i1 ip i i (4)

According to the Bayes’ theorem, the posterior proba-
bility can be calculated as follows
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where P(g) is the prior probability, P(xi | Ci = g) is the
class-conditional probability, and P(x) is the input feature
probability. The prior probability of the g-th class, P(g), is
the relative occurrence frequency of the g-th class

=P g
n

n
( )

g

(6)

with ng being the number of molecules belonging to the g-
th class, and n being the total number of molecules. P(x),
which is the probability of observing values for the input
features, is constant and can, thus, be neglected. The class-
conditional probability, P(xi | Ci = g), is the probability of
observing a given set of input features (xi) in the
molecules of the g-th class, and it can be estimated by
several methods.31 In this work, we used the multivariate
Bernoulli NB approach32 for binary data; the class-
conditional probability was computed as
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where P(g|xj) is the posterior probability of the j-th feature
in the data set, computed as
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where k runs over the n training molecules, ng is the
number of molecules belonging to the g-th class, G is the
number of classes, and δkg is equal to 1 if the k-th molecule
has the j-th feature and belongs to the g-th class. In other
words, P(g | xj) is the occurrence frequency of the j-th
feature in the considered class. The values of 1 and G at
the numerator and denominator, respectively, are referred
to as Laplacian smoothing, utilized to rule out zero-valued
conditional probabilities.33 Intuitively, given a new
molecule represented by a set of binary descriptors, NB
calculates the posterior probability for each class (eq 4)
based on (i) the class prior probability (the higher, the
higher the posterior probability) and (ii) the occurrence
frequency of the molecular features in that class (the
higher the frequency, the higher the posterior proba-
bility). The molecule is then assigned the class with the
highest posterior probability based on the observed
molecular features.

Statistical Evaluation of the Model Performance. Models
were evaluated through three classification indices, namely
Sensitivity (Sn), Specificity (Sp), and Non-Error Rate (NER),
defined as follows34

=
+

=
+

=
+

Sn
TP

TP FN

Sp
TN

TN FP

NER
Sn Sp

2 (9)

where TP and TN quantify the number of correctly classified
positive compounds (binders) and correctly classified negative
compounds (nonbinders), respectively, while FP and FN
quantify the number of misclassified negative (nonbinders)
and positive (binders) compounds, respectively. While Sn and
Sp refer to the two classes of interest (fraction of correctly
classified binders and nonbinders, respectively), the NER (also
known as balanced accuracy or, in the case of binary

Table 1. Summary of the Performance of the Chosen Models in Fitting, 5-Fold Cross-Validation, and on the Test Seta

fitting (1265 chemicals) cross-validation (1265 chemicals) test set (422 chemicals)

ID Sn Sp NER np% Sn Sp NER np% Sn Sp NER np%

N3 0.83 0.79 0.81 0 0.78 0.81 0.79 0 0.85 0.75 0.80 3
RF 1.00 0.83 0.91 0 0.74 0.75 0.75 0 0.70 0.70 0.70 1
NB 0.86 0.71 0.78 0 0.82 0.70 0.76 0 0.65 0.80 0.72 3
Consensus Strict 0.91 1.00 0.96 29 0.81 0.88 0.84 30 0.92 0.85 0.83 37
Consensus Loose 0.83 0.85 0.84 0 0.78 0.81 0.81 0 0.76 0.78 0.75 3

aThe model parameters were optimized in 5-fold cross-validation (N3: α = 1.00; RF: misclassification cost of binder molecules, C = 0.96).
Sensitivity (Sn), specificity (Sp), nonerror rate (NER), and percentage of compounds not predicted (np%) are reported.
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classification tasks, as Area Under the ROC Curve34) quantifies
the overall classification performance. The NER avoids biased
evaluations when the classes are unbalanced.34 Sn, Sp, and NER
were calculated in fitting, 5-fold cross-validation (venetian blind
resampling), and on the test and external sets.
2.3. Software and Code. Molecular descriptors were

computed with Dragon 7.19 For calculating CATS descriptors
and radial fragments, the molecules were standardized using
RDKit “Structure Normalizer” node (default settings) of
Konstanz Information Miner (KNIME)36 platform, to ensure
the correct identification of functional groups. All the
calculations were performed in MATLAB35 using code written
by the authors. Random Forest predictions were built on
MATLAB “TreeBagger” function. The Minimum Spanning
Tree (MST) was calculated with the MATLAB “minspan”
function and displayed with Pajek (v 5.05).37 Data and
MATLAB code for applying Naive Bayes, N3, and Random
Forest are provided for free on the Milano Chemometrics Web
site (http://www.michem.unimib.it/download/data).

■ RESULTS AND DISCUSSION
Single Models. The machine-learning models were

calibrated on the 1265 training set molecules, using different

combinations of molecular descriptors (ECFPs and CATS) and
modeling approaches. The best models resulted to be (i) N-
Nearest Neighbors (N3) applied to ECFPs with Jaccard-
Tanimoto similarity index and tuning parameter (α, eq 1) equal
to 1.00, (ii) Random Forest (RF) applied to CATS descriptors
(100 trees, misclassification cost for binder compounds equal to

0.98), and (iii) multivariate Bernoulli Naive Bayes (NB) with
Lagrange smoothing applied to ECFPs. The model parameters
were chosen with 5-fold cross-validation. The cross-validation
protocol also confirmed the model robustness and stability, with
a classification performance comparable to that obtained in
fitting (Table 1).
The 422 test set molecules served as a second step of model

validation. To ensure the reliability of the prediction and rule-
out model extrapolations for molecules too different from the
training set, each model was equipped with an Applicability
Domain (AD) assessment. The AD can be defined as the
chemical space where the model predictions can be considered
as reliable,38 and it is an essential aspect to consider when
predicting untested compounds according to the OECD
(Organization for Economic Cooperation and Development)
principles for QSAR.15 In this study, the ADwas defined for each
modeling strategy on a case-by-case basis, as follows:

1. N-Nearest Neighbors (N3): a target molecule is
considered outside the model applicability domain if
both its class scores (eq 2) are lower than the predefined
class threshold. The thresholds were defined as the 95th
percentile of the class scores of the training molecules
(w*binder = 0.8789, w*nonbinder = 0.9007, with α = 1.00);

2. Naive Bayes (NB): a target molecule is considered
outside the model applicability domain if its average
Jaccard-Tanimoto similarity to the nearest 100 training
molecules is lower than a defined threshold. This
threshold was defined as the 95th percentile of the
average Jaccard-Tanimoto similarity of the training
chemicals to their 100 closest neighbors (s* = 0.1748);

3. Random Forest (RF): the AD was defined utilizing the
bounding-box approach,38 that is, through a hyper-
rectangle delimited by the minimum and maximum
value of each descriptor of the training set molecules. If a
molecule falls out of such range for at least one descriptor,
then it is considered as out of the AD.

All the calibrated models have a comparable performance in
cross-validation and on the test set but differ from each other
(Table 1). N3 and NB, calibrated on ECFPs, show an opposite
performance in modeling AR binding, the former being more
suitable in recognizing binder compounds (Sn = 0.85 and Sp =
0.75 on the test set), while the latter having a better performance
on nonbinders (Sn = 0.65 and Sp = 0.80 on the test set). The
performance differences between the two approaches are due to
the different characteristics of the two machine learning
methods. N3, in fact, tends to favor the less-numerous classes,
due to the normalization over the number of the utilized
neighbors belonging to a given class for calculating the score (eq
2). Additionally, N3 was calibrated using the Jaccard-Tanimoto
similarity index, which, for two molecules, considers only the
presence of common features but neglects the features that are
absent in both molecules. On the contrary, NB with the
Bernoulli multivariate approach explicitly considers also the
absence of features for class assignment (eq 7). RF shows the
most balanced performance among the utilized approaches (Sn
= Sp = 0.70 on the test set). As typically observed for RF, the
model has a good capacity of describing the data when applied in
fitting (Sn = 1.00 and Sp = 0.83, Table 1). This is due to the
“descriptive” nature of RF individual trees, which are not pruned
and, thus, have a good fitting capacity. The lack of overfitting of
the final RF model, which is a consensus among the individual
bootstrapped trees, is thus shown by the good performance in

Figure 1.Decision rules of the two consensus approaches, here referred
to as Strict and Loose, based on the three single models (M1, M2, and
M3). The strict consensus provides a prediction if and only if all three
models (M1, M2, and M3) agree. The loose consensus provides a
prediction in a majority voting fashion, by choosing the class that is
most frequently predicted among the three individual models.
Predictions out of the AD are not considered by any of the consensus
approaches. Note that M1, M2, and M3 may represent any one of the
chosen single models.
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cross-validation (Table 1) and its comparability with the
statistics obtained on the test set, which was not used to train
the model.
Consensus Approaches.To increase the predictivity of the

developedmodels, we applied a consensus approach. Consensus
approaches consist of the aggregation of models of different
nature and/or with different performance, generally with the aim
of improving the overall model predictivity (e.g., refs 39 and 40)
and prediction confidence. In this work, two types of consensus
modeling were performed:

1. Consensus “Strict”, which provides a prediction for a
molecule if and only if all three models agree on it (Figure
1). The predicted class will be the one predicted in
agreement by all three models. In any other case

(disagreeing predictions or molecule out of at least one
AD), no prediction is provided.

2. Consensus “Loose”, which operates in the so-called
“majority-voting” fashion. In this case, the prediction
provided is chosen as the class that is most frequently
predicted among the three models. Note that predictions
out of the AD are not considered (Figure 1).

The two consensus approaches lead to an improved
performance in comparison with the single models on both
the training and the test set (Table 1).
The strict consensus, which is the most restrictive, leads to a

large improvement in the performance, especially on the test set
(up to 0.27 and 0.15 of improvement on Sn and Sp, respectively,
Table 1). The restrictive character of the approach causes many
compounds to be not predicted (up to 37% on the test set, Table

Table 2. Summary of the Performance of the Chosen Models after Refitting on the Whole Calibration Set and Their Application
to the External Evaluation Seta

calibration set (1687 chemicals) external set (3882 chemicals)

ID param Sn Sp NER np% Sn Sp NER np%

N3 α = 1.00 0.82 0.80 0.81 0 0.72 0.75 0.74 6
RF C = 0.96 1.00 0.78 0.89 0 0.72 0.75 0.73 3
NB 0.69 0.81 0.75 0 0.65 0.79 0.72 4
Consensus Strict 1.00 0.89 0.94 28 0.80 0.87 0.83 39
Consensus Loose 0.85 0.81 0.83 0 0.71 0.79 0.75 5

aSensitivity (Sn), specificity (Sp), nonerror rate (NER), and percentage of compounds not predicted (np%) are reported.

Figure 2. Analysis of CATS descriptors. (a) CATS descriptors most frequently selected by RF (frequency >95%) and significantly different between
nonbinder and binder molecules (p < 0.05, Mann−Whitney test). Letters indicate the pairs of pharmacophores considered (L: lipophilic, A: acceptor,
D: donor), while the number indicates the topological distance between the two pharmacophores (from 1 to 9, 0 represents the occurrence of a
pharmacophore itself). Boxplots indicate median (solid line), first and third quartiles (box), 5th and 95th percentiles (whiskers). Colors indicate the
experimental class. (b) Pharmacophore patterns of steroidal and nonsteroidal binders present in the data set (orange: acceptor, blue: donor, yellow:
lipophilic) labeled in agreement with Dragon CATS scheme. 1 = 17a-trenbolone; 2 = 5alpha-dihydrotestosterone (DHT); 3 = 17-methyltestosterone;
4 = 4-androstene-3,17-dione; 5 = progesterone; 6 = testosterone propionate, 7 = fluorescein; 8 = hydroxychlor; 9 = prallethrin.
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1), due to at least one disagreeing prediction among the single
models. This approach is most suited to applications where the
reliability of the prediction must be ensured, at the expenses of
the number of molecules for which obtaining a prediction is
possible.
The loose consensus leads to a more balanced performance

than N3 and NB, with a general improvement compared to RF
(Table 1). Unlike the strict consensus, the improvement is
moderate, but also the number of nonpredicted compounds (up
to 3%) is moderate. Thus, such a consensus approach is more
suited than the strict consensus to provide predictions for the
largest number of compounds possible, when necessary.
The prediction improvement obtained with the consensus

approach is due to the aggregation of complementary computa-
tional techniques, each grasping partial information on the
training data, thereby reaching better predictions than the
individual models.27

External Validation. In the final stage of the model
development process, the models were refitted on the complete
calibration set of 1687 molecules with the settings defined
previously, and utilized for predicting the 3882 molecules of the
external validation set (Table 2). The model AD was redefined
with new thresholds determined on the whole calibration set
(N3: w*nonbinder = 0.9042, w*binder = 0.8645; NB: s* = 0.1884).
The obtained performance is comparable to what was previously
observed on the internal test set (Table 1), thus further
confirming the model robustness and applicability to novel

compounds. Consensus approaches lead to improved NER
values on the external set, with the highest performance (Sn =
0.80, Sp = 0.87, NER = 0.83) obtained by the strict consensus, at
the expenses of the number of predicted compounds (only 61%
compounds are predicted). The loose consensus leads to the
second largest NER (NER = 0.75), with only 5% of compounds
not predicted. N3 has a similar nonerror rate (NER = 0.74),
with, however, a larger number of nonpredicted compounds
(6%) and a smaller Sp (4% smaller). Since high values of Sp are
well-suited for the prioritization purposes of the project, the
loose consensus was retained as the final chosen approach,
despite its only moderate improvement compared to the single
models.

Model-Driven Mechanistic Insights. Machine learning
algorithms can be leveraged to increase the understandability of
the obtained predictions and to gather useful data-driven
insights. Thus, in this paragraph, the models are interpreted on a
molecular descriptor-basis.

CATS Descriptors. CATS descriptors are intrinsically
connected to a structural interpretation, as they encode
information on the occurrence of pharmacophore pairs
(hydrogen-bond donor [D] and acceptor [A], positively [P]
and negatively [N] charged, and lipophilic [L] atoms) at
increasing topological distance. The most frequently occurring
CATS descriptors in the 100 trees constituting the RF model
(frequency >95%, 35 descriptors) were utilized to enhance the
model interpretability (Figure 2). A Mann−Whitney test41 was

Figure 3.Minimum Spanning Tree performed on the ECFP. Compounds are colored according to their experimental class (orange: nonbinder, blue:
binder). The four most numerous clusters of binders are marked with capital letters (from A to D). Some examples of compounds belonging to each
cluster are reported on the right (10 = imazil, 11 = prochloraz, 12 = propiconazole, 13 = tetraconazole, 14 = 17alpha-ethinylestradiol, 15 = mestranol,
16 = estriol, 17 = estrone, 18 = eosin, 19 = bromophenol blue, 20 = diethylstilbestrol, 21 = chlorophacinone, 22 = oxazepam, 23 = SR146131, 24 =
SSR240612).
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performed to detect the descriptors within this reduced pool that
have significantly different values (p < 0.05) in binder molecules
compared to nonbinders. The most statistically relevant
descriptors are connected to the presence of (i) lipophilic
regions (L atoms separated by 1 to 9 bonds), (ii) pairs of
acceptor-lipophilic (AL) separated by two to nine bonds, and
(iv) donor-lipophilic pairs separated by 2 to 6 bonds.
Additionally, binder compounds result in having a higher
number of donor (“0_DD”), acceptor (“0_AA”), and lipophilic
(“0_LL”) atoms (Figure 2a).
The selected descriptors capture well-known pharmacophoric

patterns of natural and synthetic steroids, such as testosterone
and DHT (Figure 2b, 1−6). Hydrophobic interactions are
known to be relevant for the ligand interaction with the
hydrophobic pocket of the ligand binding domain (LBD) of AR.
Additionally, the acceptor/donor pharmacophoric features are

fundamental for positioning and anchoring in the receptor
pocket.42,43 The “fuzzy” character24 of CATS descriptors allows
for also considering nonsteroidal scaffolds, thereby correctly
predicting other types of AR-binders, such as the organic dye
fluorescein (7), hydroxychlor (8), and the insecticide prallethrin
(9), which share similar pharmacophore patterns to steroids.
The findings related to our RF model are in agreement with the
work of Tamura and coauthors,44 which identify strong
hydrogen bonding and/or electrostatic interaction ability at
the position corresponding to the 3-keto group of DHT (2) and
an H-bond acceptor or donor group at the position
corresponding to the 17β-OH of DHT as responsible for the
interaction with the ligand binding domain. Additionally,
lipophilic groups induce the interaction with the hydrophobic
pocket and play a prominent role in increasing AR binding
activity.44

Table 3. ECFP-Related Molecular Fragments with Significantly Diverse Occurrence between Nonbinders and Binders (p < 0.05,
Mann−Whitney Testa)

aID, depiction, and SMARTS string are reported, along with the mean value and standard error (SE) calculated on the fragment occurrence
frequency (i.e., no. of fragments) in nonbinder and binder molecules, and the ratio between binders and nonbinders. In the fragment depiction, “X”
followed by a number represents the atom connectivity (H-depleted).
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ECFPs. To analyze the structural information encoded within
ECFPs and grasped by the machine learning models, we
performed a Prim’s minimum spanning tree (MST),45 which
allows for representing the similarities between the molecular
fingerprints in the form of a graph, where the vertices are the
molecules and edges are their similarity relationships (Figure 3).
MST was calculated utilizing the Jaccard-Tanimoto similarity
index, the same used for N3 modeling. In the descriptors’ space
of ECFPs, AR modulators are successfully clustered, with four
well-separated clusters (Figure 3, A−D), thus motivating the
satisfactory performance of N3 and NB models. The obtained
clusters contain distinct categories of compounds. Cluster A
mainly contains compounds characterized by the presence of
halogenated benzenes, imidazole/triazole groups, and a hydro-
phobic chain. Cluster B collects steroidal compounds, such as
1−9 and 17alpha-ethinylestradiol (Figure 3, 14). Clusters C and
D are more heterogeneous, and both contain compounds with
many halogenated groups and/or atoms with high electrostatic
or donor/acceptor potential, features that are relevant for the
interaction with AR-LBD.44

In analogy with recent studies,46−,48 the fragments generated
by the ECFP algorithm were used to enhance the interpretation
of the structural features captured by the models; the occurrence
of all fragments of the calibration molecules having a radius
between 0 and 2 bonds was generated (7773 fragments). Like in
the case of CATS, a Mann−Whitney test41 allowed for the
detection of fragments with a significantly different occurrence
(p < 0.05) in binder molecules compared to nonbinders. Table 3
lists the fragments with significant differences of occurrence in
binders and nonbinders and present in at least 10% of the
calibration set molecules. Binder compounds have from 1.5 to
approximatively three times more secondary, tertiary, and

quaternary carbon atoms (fragments F1 to F3), which
contribute to a general increase of the compounds’ hydro-
phobicity and the corresponding interaction with the hydro-
phobic pocket of AR. Binders contain a higher number of sp2-
hybridized carbon atoms than nonbinders, a feature known to
increase the binding affinity to AR-LBD, due to the reduction of
molecular flexibility.44 Additionally, the presence of hydrogen
bond donors/acceptors (e.g., F5, F6, and F17) confirms what is
already observed on CATS and ECFPs.
Since the mechanism by which AR differentiates between

agonist and antagonist ligands is still poorly understood,49,50 we
expanded our structure−activity relationship (SAR) investiga-
tion by analyzing ECFP-related fragments on binders labeled as
either AR agonist or antagonists (39 and 155 compounds in the
calibration set, respectively). Table 4 lists the fragments with
significant differences of occurrence in agonists and antagonists
(p < 0.05) and present in at least 30% of the considered
molecules. Agonist molecules have up to twice the number of
aliphatic carbons compared to antagonists (F18, F19, F20, and
F21, Table 4), especially in the form of linear aliphatic chains
(F29:7 ± 1 times higher on average), as well as a higher number
of oxygen atoms (fragment F24), especially in the form of
carbonyl groups (fragment F30:2.8 ± 0.4 times higher) and
potentially responsible for the positioning and anchoring in the
receptor pocket.42,43 Antagonists have a lower saturation degree
and a higher number of sp2-hybridized carbon atoms (F26, F27,
and F28), as well as a higher number of nitrogen and chlorine
atoms (fragments F22 and F23) compared to agonists. These
differences provide insights into the structural features related to
the conformational changes due to agonist and antagonist
binding to AR-LBD50 and will need further investigation.

Table 4. ECFP-RelatedMolecular Fragments with Significantly Diverse Occurrence between Agonists and Antagonists (p < 0.05,
Mann−Whitney Test)a

aID, depiction, and SMARTS string are reported, along with the mean value and standard error (SE) calculated on the fragment occurrence
frequency (i.e., number of fragments) in agonist and antagonist molecules. In the fragment depiction, “X” followed by a number represents the
atom connectivity (H-depleted). ID in brackets refers to fragments previously identified in Table 3.
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■ CONCLUSION

This work presented a consensus approach based on machine
learning models for the prediction of the binding to the
androgen receptor (AR). Such models have been developed in
the context of the international collaborative project (CoM-
PARA) promoted by the U.S. EPA, for the prioritization of
potential endocrine disrupting chemicals. The models were
developed in compliance with OECD principles for QSAR
validity and on a reliable data set merging 11 in vitro assays, thus
making the experimental response, and the corresponding
models, less prone to false positive and false negative generation.
The single models (N-Nearest Neighbor [N3], Random Forest
[RF], and Naive Bayes [NB]) were developed on approximately
2000 molecules and show different performances, with N3
having the largest sensitivity, NB having the largest specificity,
and RF being the most balanced. The consensus models showed
an increased prediction reliability compared to the single
models, especially on the external validation compounds. The
external validation of the consensus approaches on approx-
imately 4000 external molecules confirmed the model
predictivity toward unknown compounds, with NER equal to
0.75 and 0.83 for the loose and strict approaches, respectively.
The presented models were then utilized to predict the potential
for AR binding of approximatively 40,000 untested compounds,
to be used by the U.S. EPA for testing prioritization. The models
also contribute to the expansion of the chemical space covered
by computational models for ToxCast, Tox21, and other U.S.
EPA projects. The descriptor-based interpretation of the
selected models highlighted some structural features related to
AR binding, such as the positioning of pharmacophoric features,
the number of sp2-hybridized carbon atoms, and the presence of
hydrogen bond donors/acceptors. Our work shows the potential
of machine learning and consensus algorithms for testing
prioritization, animal testing reduction, and data-driven
mechanistic insights.
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